$k$-tuple total restrained domination/domatic in graphs
author
Abstract:
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum number of classes of a partition of $V$ such that its all classes are $k$-tuple total restrained dominating sets in $G$ we call the $k$-tuple total restrained domatic number of $G$. In this paper, we give some sharp bounds for the $k$-tuple total restrained domination number of a graph, and also calculate it for some of the known graphs. Next, we mainly present basic properties of the $k$-tuple total restrained domatic number of a graph.
similar resources
k-TUPLE DOMATIC IN GRAPHS
For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...
full textk-tuple total domination and mycieleskian graphs
let $k$ be a positive integer. a subset $s$ of $v(g)$ in a graph $g$ is a $k$-tuple total dominating set of $g$ if every vertex of $g$ has at least $k$ neighbors in $s$. the $k$-tuple total domination number $gamma _{times k,t}(g)$ of $g$ is the minimum cardinality of a $k$-tuple total dominating set of $g$. if$v(g)=v^{0}={v_{1}^{0},v_{2}^{0},ldots ,v_{n}^{0}}$ and $e(g)=e_{0}$, then for any in...
full textk-TUPLE TOTAL DOMINATION IN INFLATED GRAPHS
The inflated graph GI of a graph G with n(G) vertices is obtained from G by replacing every vertex of degree d of G by a clique, which is isomorph to the complete graph Kd, and each edge (xi, xj) of G is replaced by an edge (u, v) in such a way that u ∈ Xi, v ∈ Xj , and two different edges of G are replaced by non-adjacent edges of GI . For integer k ≥ 1, the k-tuple total domination number γ ×...
full textRoman k-Tuple Domination in Graphs
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
full textk-TUPLE TOTAL DOMINATION AND MYCIELESKIAN GRAPHS
Let k be a positive integer. A subset S of V (G) in a graph G is a k-tuple total dominating set of G if every vertex of G has at least k neighbors in S. The k-tuple total domination number γ×k,t(G) of G is the minimum cardinality of a k-tuple total dominating set of G. In this paper for a given graph G with minimum degree at least k, we find some sharp lower and upper bounds on the k-tuple tota...
full textMy Resources
Journal title
volume 40 issue 3
pages 751- 763
publication date 2014-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023